
Establishing the structure of GeS2 at high pressures and temperatures: a combined approach

using x-ray and neutron diffraction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Condens. Matter 21 474217

(http://iopscience.iop.org/0953-8984/21/47/474217)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 06:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/21/47
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 21 (2009) 474217 (22pp) doi:10.1088/0953-8984/21/47/474217

Establishing the structure of GeS2 at high
pressures and temperatures: a combined
approach using x-ray and neutron
diffraction
Anita Zeidler1, James W E Drewitt1, Philip S Salmon1,
Adrian C Barnes2, Wilson A Crichton3, Stefan Klotz4,
Henry E Fischer5, Chris J Benmore6, Silvia Ramos7 and
Alex C Hannon8

1 Department of Physics, University of Bath, Bath BA2 7AY, UK
2 H H Wills Physics Laboratory, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, UK
3 European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, Grenoble Cedex,
F-38043, France
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Abstract
The change in structure of glassy GeS2 with pressure increasing to �5 GPa at ambient temperature was
explored by using in situ neutron and x-ray diffraction. Under ambient conditions, the glass structure is
made from a mixture of corner- and edge-sharing Ge(S1/2)4 tetrahedra where 47(5)% of the Ge atoms are
involved in edge-sharing configurations. The network formed by these tetrahedra orders on an
intermediate range as manifested by the appearance of a pronounced first sharp diffraction peak in the
measured total structure factors at a scattering vector k = 1.02(2) Å

−1
which has a large contribution from

Ge–Ge correlations. The intermediate range order breaks down when the pressure on the glass increases
above ≈2 GPa but there does not appear to be a significant alteration of the Ge–S coordination number or
corresponding bond length with increasing density. The results for the glass are consistent with a
densification mechanism in which there is a replacement of edge-sharing by corner-sharing Ge centred
tetrahedral motifs and/or a reduction in the Ge–Ŝ–Ge bond angle between corner-sharing tetrahedral
motifs with increasing pressure. The change in structure with increasing temperature at a pressure of
�5 GPa was also investigated by means of in situ x-ray diffraction as the glass crystallized and then
liquefied. At 5.2(1) GPa and 828(50) K the system forms a tetragonal crystal, with space group I 4̄2d and
cell parameters a = b = 4.97704(12) and c = 9.5355(4) Å, wherein corner-sharing Ge(S1/2)4 tetrahedra
pack to form a dense three-dimensional network. A method is described for correcting x-ray diffraction
data taken in situ under high pressure, high temperature conditions for a cylindrical sample, container and
gasket geometry with a parallel incident beam and with a scattered beam that is defined using an
oscillating radial collimator. A method is also outlined for obtaining coordination numbers from direct
integration of the peaks in measured x-ray total pair distribution functions.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Glasses with the AX2 stoichiometry are at the heart of many
materials of scientific and technological importance [1], where
A denotes an electropositive species such as Si, Ge or Zn
and X denotes an electronegative species such as O, S, Se or
Cl. In these materials the basic structural motifs, which are
usually A(X1/2)4 tetrahedra, link to form a network in which
two characteristic length scales appear at distances greater
than the nearest-neighbour [2–6]. One of these length scales
is associated with an intermediate range and manifests itself
by the appearance of a so-called first sharp diffraction peak
(FSDP) in the measured diffraction patterns at a scattering
vector kFSDP where kFSDPrAX � 2.5 and rAX is the nearest-
neighbour distance for unlike chemical species [7–9]. The
other is associated with an extended range which has a
periodicity given by �2π/kPP where kPP denotes the scattering
vector of the principal peak and kPPrAX � 4.8 [6]. The nature
of the network can be changed substantially by altering the type
and connectivity of the basic structural motifs via a change in
the atomic constituents or adjustment of the temperature and
pressure. This leads to an interplay between the importance
of the ordering on the intermediate and extended length
scales [4, 6].

For example, in the case of the archetypical ‘strong’ glass
forming system GeO2 [10], the glass network under ambient
conditions is made from an arrangement of corner-sharing
Ge(O1/2)4 tetrahedra [4, 11]. When the pressure is increased
to ≈15 GPa, in situ x-ray and neutron diffraction experiments
show that the FSDP changes significantly, by moving to
progressively higher k-values and merging with the principal
peak, as the network reorganizes to form a dense octahedral
glass [12]. In comparison, GeSe2 is a more ‘fragile’ glass
forming system than GeO2 [13] and the glass network under
ambient conditions is made predominantly from a mixture of
corner- and edge-sharing Ge(Se1/2)4 tetrahedra with a small
but significant number of homopolar or ‘wrong’ bonds [14, 15].
When the pressure on this glass is increased from ambient
to 9.3 GPa, in situ x-ray diffraction experiments show a
breakdown of the intermediate range order, as manifested by
a disappearance of the FSDP, whereas the extended range
order is enhanced, as manifested by a gain in intensity of
the principal peak [16]. Similar behaviour is observed for
the liquid phase of GeSe2 as the density is increased at
constant temperature by applying a pressure between 0.5 and
4.1 GPa at 1120 K [17]. When the temperature of the
liquid is increased at much lower pressures, the density first
increases [18] and neutron diffraction experiments show a
disruption of the network as manifested by a disappearance of
the FSDP [19, 20].

It is therefore of interest to understand the relation
between the ordering on different length scales and the
topological features of network structures. In this context, the
GeS2 system has long been regarded as an important test case
for examining contrasting models for topological disorder [21],
especially as the crystal structures form both two-dimensional
(2D) [22] and three-dimensional (3D) [23] networks under
ambient conditions. These crystal structures differ by the

way in which the basic structural motifs, Ge(S1/2)4 tetrahedra,
interconnect: the former comprises chains of corner-sharing
motifs linked by edge-sharing motifs to form a layered
structure whereas the latter comprises a network of purely
corner-sharing motifs. Pressure should be a sensitive probe of
the network topology of the glass since the stronger (‘intra-
molecular’) bonds within layer-like assemblies of motifs
should be less sensitive to change in density as compared to the
weaker ‘inter-molecular’ bonds between such assemblies [21].
More recently, these ideas have been extended to include
the notion of polyamorphism i.e. the ability of a liquid or
glass to undergo an abrupt change in structure with change
of state variables, analogous to the polymorphic transitions
that occur between different crystalline structures of the same
compound [24]. The structural changes observed for liquid
GeSe2 under high pressure and high temperature conditions
may provide evidence for such a 2D to 3D transformation [17].

In the present work a combination of x-ray and neutron
diffraction is used to investigate the changes in structure that
occur for glassy GeS2 when (i) the pressure is increased
to �5 GPa at room temperature and (ii) the temperature is
increased at this high pressure to induce crystallization and
eventual liquefaction. Part of the motivation is provided
by the structural analogies that exist between GeS2 and
GeSe2 [25–29] and by the previous x-ray and neutron
diffraction work on liquid and glassy GeSe2 which shows
that substantial structural alterations occur with change of
density [30]. The information provided by these experiments
does, however, focus on the topological as opposed to chemical
ordering of the network. This follows from the close similarity
in the atomic form factors for Ge and Se, and the close
similarity in the coherent neutron scattering lengths for Ge
and Se of natural isotopic abundance, which means that
conventional x-ray and neutron diffraction experiments amount
to a measurement of the Bhatia–Thornton [31] number–
number partial structure factor SNN(k) [20, 32, 33]. In contrast,
there is a significant difference in both the x-ray form factors of
Ge and S and their coherent neutron scattering lengths which
means that x-ray and neutron diffraction experiments provide
more information on the chemical ordering. In addition, unlike
the case of GeSe2, the bond lengths in GeS2 are significantly
different which aids in the interpretation of the measured
pair distribution functions. Although the crystallization of
amorphous GeS2 under pressure increasing to 9 GPa has been
investigated by x-ray diffraction [34], along with the structure
of permanently densified GeS2 glasses [35], little information
has been obtained on the glass structure as a function of
pressure and temperature by in situ diffraction techniques. An
exception is the early x-ray diffraction work of Tanaka [36] on
the glass structure at pressures up to 7 GPa made using Mo
Kα radiation and a diamond anvil cell. Like GeSe2, the GeS2

system is also a more fragile glass former than GeO2 [37, 38].
The paper is organized as follows. The essential theory

required for understanding the x-ray and neutron diffraction
experiments is described in section 2. The experimental
method is then given in section 3 in five distinct subsections.
In the first, the method used to prepare the glassy GeS2

samples is outlined and, in the second, the neutron and x-
ray diffraction experiments made under ambient temperature
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and pressure conditions are reported. In the third, the x-ray
diffraction experiments made in situ under (i) high pressure and
ambient temperature or (ii) high pressure and high temperature
conditions are described and, in the fourth, an account is
given of the procedure required for the x-ray data reduction.
In the fifth, the neutron diffraction experiments made in situ
under high pressure and ambient temperature conditions are
reported. The results are then presented in section 4 in six
distinct subsections. In the first, the structure of glassy GeS2

at ambient temperature and pressure is described. The changes
in this structure observed by x-ray diffraction are then given,
starting with the pressure dependence of the glass structure at
room temperature. The structure of the glass recovered from
high pressure is then described, followed by the structure of
GeS2 at high pressures and high temperatures, and ending with
the structure of crystalline GeS2 as measured in situ under
high pressure and high temperature conditions. Finally, in the
sixth subsection the structure of glassy GeS2 at high pressure
and ambient temperature, as determined by in situ neutron
diffraction experiments, is described. The results are discussed
in section 5 and conclusions are drawn in section 6.

2. Theory

In an x-ray or neutron diffraction experiment on glassy GeS2

the coherent scattered intensity can be represented by the total
structure factor [39]

F(k) =
n∑

α=1

n∑

β=1

cαcβ fα(k) f ∗
β (k)[Sαβ(k)− 1] (1)

where α and β denote the chemical species, n = 2 is
the number of different chemical species, cα represents the
atomic fraction of chemical species α, fα(k) and f ∗

α (k) are the
scattering length (or form factor) and its complex conjugate
for chemical species α, Sαβ(k) is a Faber–Ziman [40] partial
structure factor and k is the scattering vector. Sαβ(k) is related
to the partial pair distribution function gαβ(r) by the Fourier
transform relation

gαβ(r)− 1 = 1

2π2 n0 r

∫ ∞

0
dk k[Sαβ(k)− 1] sin(kr) (2)

where n0 is the atomic number density and r is a distance in
real space. The scattering lengths are independent of k for the
case of neutron diffraction experiments but not for the case of
x-ray diffraction experiments. In order to compensate for this
k dependence, the total structure factor can be re-written as

S(k)− 1 = F(k)

|〈 f (k)〉|2 (3)

where 〈 f (k)〉 = cα fα(k) + cβ fβ(k) is the mean scattering
length. We note that this function should be interpreted with
care because the weighting factors for the Sαβ(k) functions
are k dependent. The corresponding real space information
is provided by the total pair distribution function which is
obtained from the Fourier transform relation

G(r)− 1 = 1

2π2 n0 r

∫ ∞

0
dk k[S(k)− 1] sin(kr). (4)

For the case of x-ray diffraction experiments, the normalization
defined by equation (3) has the advantage that it allows for a
better resolution of the peaks in G(r). For r values smaller
than the distance of closest approach between the centre of two
atoms gαβ(r) = gαβ(r = 0) = 0 such that G(r) = G(r =
0) = 0. The mean coordination number of atoms of type β ,
contained in a volume defined by two concentric spheres of
radii ri and r j centred on an atom of type α, is given by

n̄βα = 4π n0 cβ

∫ r j

ri

dr r 2gαβ(r). (5)

In practice, the measured reciprocal space functions will
be subjected to a modification function M(k) which results,
for example, in truncation of the data sets at some maximum
value kmax owing to the finite measurement window function
of a diffractometer. In consequence, equation (4) needs to be
modified and it is convenient to re-write it as

r [G ′(r)− 1] = 1

2π2n0

∫ ∞

0
dk k[S(k)− 1] M(k) sin(kr)

= r [G(r)− 1] ⊗ M(r) (6)

where ⊗ denotes the one-dimensional convolution operator. In
this expression the function r [G(r) − 1] is convoluted with a
symmetrical M(r) function. For example, the measurement
window is usually represented by the step function M(k) = 1
for |k| � kmax, M(k) = 0 for |k| > kmax whence M(r) =
sin(kmaxr)/πr . Alternatively, the adoption of a Lorch [41]
modification function M(k) = sin(ak)/(ak) for |k| � kmax,
M(k) = 0 for |k| > kmax gives M(r) = [Si(π(r + a)/a) −
Si(π(r − a)/a)]/2πa where a = π/kmax and the sine integral
Si(x) ≡ ∫ x

0 sin(t)/t dt [5]. If the oscillations in the structure
factor have not ceased before kmax then an application of the
Lorch or related modification function will give a smoother
pair correlation function at all r values by comparison with
the use of a step modification function but at the expense of
a loss in resolution of the first peaks in r space. We note
that for r values smaller than the distance of closest approach
between the centre of two atoms G ′(r) = G ′(r = 0) = 0 (see
appendix A).

The notation SX(k) and SN(k) will be used in order to
distinguish between the total structure factors measured by x-
ray and neutron diffraction and the corresponding total pair
distribution functions will be labelled by G ′

X(r) and G ′
N(r),

respectively. The method used to extract coordination numbers
n̄βα from integration over peaks in G ′

X(r), which is more
complicated than in the case of neutron diffraction owing to
the occurrence of k dependent scattering lengths, is outlined
in appendix A. This integration procedure avoids the process
whereby a peak shape function in r space is assumed and its
Fourier transform is then fitted to the reciprocal space data
at high k values. The coherent neutron scattering lengths for
Ge and S are bGe = 8.185(20) and bS = 2.847(1) fm [42].
The partial structure factors in SX(k) and SN(k) are therefore
weighted differently: the ratio of the Ge to S scattering lengths
fGe(k)/ fS(k) is equal to 2.875 for all k values in the case of
neutron diffraction but, at k = 0, is equal to 2 in the case of
x-ray diffraction if neutral atoms are assumed.
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3. Experimental method

3.1. Sample preparation

The GeS2 glass was prepared from high purity Ge (99.999%)
and S (�99.998%) following the procedure outlined in [43].
The elements were weighed in a high purity argon filled glove
box in the correct proportions to give a total sample mass of
≈3 g and were sealed under a vacuum of ≈10−5 Torr in a
cleaned silica ampoule of 7 mm inner diameter and 1 mm
wall thickness. The sealed ampoule was heated in a rocking
furnace at 1 ◦C min−1 to 950 ◦C, dwelling at intermediate
temperatures of 119 ◦C (the melting point of sulfur), 445 ◦C
(the boiling point of sulfur) and 937 ◦C (the melting point
of germanium) for 4 h periods, and was maintained at the
highest temperature for ≈24 h. The furnace was then placed
in a vertical position and left for 5 h, cooled to 920 ◦C at
1 ◦C min−1 and left for 4 h, before the ampoule was rapidly
quenched into icy water. The sample ingots thus formed
were visibly homogeneous and yellow in colour and there was
no deposit left elsewhere on the inside of an ampoule. A
glass transition temperature Tg of 514(2) ◦C (mid-point) was
obtained from the reversible part of the heat flow measured
using a TA Instruments Q100 modulated differential scanning
calorimeter with a scan rate of 3 ◦C min−1, modulation of
±1 ◦C per 60 s and an oxygen-free nitrogen gas flow rate
of 50 ml min−1. By comparison, the Tg value estimated
from the total heat flow takes a smaller mid-point value of
493(3) ◦C. These results compare with literature values of
453(2) ◦C [37], ≈473 ◦C [44], ≈490 ◦C [45], 491(5) ◦C [29],
≈495 ◦C [46] and ≈520 ◦C [47]. Some of this spread in values
can be attributed to the method used to measure Tg e.g. the
result of [29] was obtained from the total heat flow measured
in a differential scanning calorimetry experiment and is in
agreement with the present value. A more recent modulated
differential scanning calorimetry experiment on GeS2, using
a scan rate of 3 ◦C min−1 with a modulation of ±1 ◦C per
100 s, gave mid-point Tg values of 508 ◦C (reversible heat
flow) and 489 ◦C (total heat flow) [48]. Before each diffraction
experiment, a glassy sample was extracted from its ampoule
and part of it was finely powdered using an agate mortar and
pestle.

3.2. Neutron and x-ray diffraction experiments under ambient
conditions

The neutron diffraction experiment on glassy GeS2 was made
using the GEM diffractometer at the ISIS pulsed neutron
source [49]. The finely powdered sample was held at ambient
temperature (≈25 ◦C) in a cylindrical vanadium can of 4.8 mm
internal diameter and 0.1 mm wall thickness and diffraction
patterns were taken for the sample in its container, the empty
container, the empty instrument, and a vanadium rod of
diameter 5.99 mm for normalization purposes. Each complete
diffraction pattern was built up from the intensities measured
for the different detector groups. These intensities were
saved at regular intervals and no deviation between them
was observed, apart from the expected statistical variations,
which verified the diffractometer stability [51]. The data were

Figure 1. The mass density, ρ, and corresponding number density,
n0, of GeS2 for the as-prepared glass [26], the high temperature
crystalline α phase [22], the low temperature crystalline β phase [23],
the crystalline γ phase as prepared at 1100 ◦C and 6–6.5 GPa and
recovered to ambient conditions [70], the high temperature high
pressure crystalline δ phase as prepared by a sol-gel process [71], the
crystalline γ phase at 5.2(1) GPa and 828(5) K as found in the
present work, and the glass for samples that have been pressurized at
1.5, 3, 4.5, 6 or 9 GPa and recovered to ambient conditions [35, 73].

analysed using the program GUDRUN [50] which makes the
necessary corrections detector by detector before merging the
results to give the neutron total structure factor SN(k). It was
checked that SN(k) obeys the sum-rule relation

∫ ∞
0 [SN(k) −

1]k2 dk = −2π2n0 and gives rise to a well-behaved total
pair correlation function G ′

N(r). This function should oscillate
about zero at r values smaller than the distance of closest
approach between the centre of two atoms and, when these
small r oscillations in G ′

N(r) are set to zero, the Fourier
back-transform should be in good overall agreement with the
original reciprocal space data set [52]. The number density of
the glass n0 = 0.0359(1) Å

−3
(see figure 1) was taken from

Feltz et al [26].
The x-ray diffraction experiment on glassy GeS2 was

made using beamline 11-ID-C at the Advanced Photon Source
(APS) with an incident energy of 115.19(6) keV and a single
element germanium solid state detector. The loosely packed
glass powder was placed in a washer and sealed each side
with kapton 77–80 tape to give an approximate slab geometry
with a sample thickness of 1.5 mm at the incident beam
position. Diffraction patterns were measured for the sample in
the kapton container and the empty kapton container. The data
were analysed using the ISOMER-X software package which
made corrections for the detector deadtime and deviation of
the vertical scanning path taken by the detector from a circle
centred at the sample position [53]. The atomic form factors
were taken from [54] and the Compton scattering correction
was taken from [55].

3.3. X-ray diffraction experiments at high pressures and
temperatures

The x-ray diffraction experiments were made using the
ID30 high pressure beamline of the European Synchrotron
Radiation Facility (ESRF) with the Paris–Edinburgh press
and sample cell set-up described by Mezouar et al [56].
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The sample container at the centre of the pressure cell
was made from the hexagonal phase of boron nitride (BN)
into which finely powdered GeS2 glass was added. The
diffraction measurements were undertaken during two different
experimental runs. The first run was made at room temperature
at pressures increasing from ambient to ≈5 GPa using a 10 mm
gasket with a BN container of outer diameter 2.0 mm and
inner diameter 1.5 mm. The second run was made using
a 7 mm gasket with the BN container placed in a graphite
heater (with a thin gold marker foil) that allowed temperatures
in excess of 1000 K to be achieved while maintaining a
high pressure. For this run the BN container had inner and
outer diameters of 1.4 mm and 2.0 mm, respectively, while
the graphite heater had inner and outer diameters of 2.0 and
2.4 mm, respectively. In addition, at the end of the first run,
the pressurized sample was recovered to ambient and removed
from the cell and a further diffraction pattern was collected
for the sample. In all cases the incident beam width was
100 μm. The majority of diffraction experiments were made
using an incident wavelength of 0.3311 Å, corresponding to
the Ba K-edge (energy of 37.441 keV) used for wavelength
calibration. In addition, a few measurements were made at the
end of the first run using an incident wavelength of 0.1582 Å,
corresponding to the Pt K-edge (energy of 78.395 keV).

The diffraction patterns were collected by using a two-
dimensional MAR345 image plate detector and, for the
pressure experiments, the large background scattering from
the sample cell was minimized by using the ID30 oscillating
radial collimator system in the diffracted beam which gave
an effective scattered beam width of 100 μm. At each
pressure point three measurements of approximately 2 min
exposure were made: (i) with the incident beam passing
through the centre of the sample, (ii) with the cell moved
sideways so that the incident beam passed through the BN
sample container, and (iii) with the cell moved further sideways
so that the incident beam passed through the gasket material
(boron impregnated epoxy). In the case of the high temperature
run, a further measurement was made so that the incident
beam passed through the graphite heater and Au foil. For the
room temperature measurements the pressure in the cell was
calculated from the position of the BN (002) peak according
to the equation of state given by Le Godec et al [57]. The
change in temperature and pressure on heating the sample
was determined by reference to the position of the BN(002),
Au(111) and Au(200) peaks and using the equations of state
and thermal expansion coefficients given by Le Godec et al
[57] for hexagonal BN and by Heinz and Jeanloz [58] and
Anderson et al [59] for gold.

3.4. X-ray data reduction for high pressure and temperature
experiments

The data from the detector were processed using the FIT2D
program [60] by first selecting from the image plate only
the unobstructed scattering from the sample, i.e. that passing
through the collimator but not hitting the sides of the anvils,
thus avoiding parasitic scattering from the anvils. The data
were at this stage corrected for geometrical effects, such

as non-orthogonality of the detector relative to the incident
beam, and polarization of the incident beam. FIT2D was
then used to integrate the scattered intensity over Debye–
Scherrer cones to give a one-dimensional ‘powder’ pattern
of intensity versus scattering angle 2θ [39]. Use of the
oscillating radial collimator system enables an elimination of
all the container scattering for 2θ � 10◦ and all the gasket
scattering for 2θ � 5◦ (see appendix B). The precise scattering
angle at which the cut-off occurs depends on the sample
diameter and is affected by any distortion that the sample may
undergo on compression/heating. The x-ray structure factors
were subsequently calculated by using the following analysis
procedure.

(i) The diffraction pattern was measured for the sample
centred in the incident beam. For this situation, the illuminated
volumes of the sample, container and gasket for each scattering
angle 2θ were calculated from the known geometry of the
incident beam and oscillating radial collimator, and the sample
and container diameters (see appendix B).

(ii) The BN container scattering was measured with the
cell moved sideways relative to the incident beam. This
intensity was scaled, using the calculations made in (i), to be
commensurate with the volume of BN illuminated when the
sample is positioned so that the incident beam passes through
its centre. The scaled container intensity was then subtracted
from the intensity measured in stage (i).

(iii) The gasket scattering was also measured with the
cell moved sideways relative to the incident beam. This
intensity was scaled, using the calculations made in (i), to be
commensurate with the volume of gasket illuminated when the
sample is positioned so that the incident beam passes through
its centre. The scaled gasket intensity was then subtracted
from the result of stage (ii). In practice, this additional
correction was very small and was not necessary for the
ambient temperature run.

(iv) Once the data were corrected for the container and
gasket scattering, the resulting intensity was scaled to account
for the change in illuminated volume of the sample with
scattering angle. A correction was not made for attenuation
by the sample, container and gasket materials of the incident
and scattered beams (see appendix B).

(v) The resulting data for the sample were normal-
ized to electron units by scaling to match the sum of the
self-scattering,

∑
α cα fα(k) f ∗

α (k), and Compton scattering,
(dσ/d
)Compton, contributions to the x-ray differential scatter-
ing cross-section for the sample

(
dσ

d


)

x

=
(

dσ

d


)

Compton

+
∑

α

cα fα(k) f ∗
α (k)+ F(k) (7)

where F(k) is defined by equation (1). The Compton scattering
corrections were made using the tables given by Hubbell et al
[61] and the form factors for neutral Ge and S atoms were taken
from [54].

In practice the analysis procedure needed to be adjusted
because the sample was compressed in the cell, thus reducing
its diameter. At each pressure point, this diameter was
therefore altered in order to obtain a reasonable fit to the sample
self-scattering. Table 1 shows the sample radius used in the
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Table 1. The change in effective sample radius with increasing
pressure for the diffraction experiment on glassy GeS2 made using
the ID30 high pressure beamline at room temperature.

Applied pressure
(GPa)

Effective sample radius
(mm)

0.11 0.65
0.75 0.55
1.49 0.53
2.08 0.52
3.07 0.52
3.97 0.52
4.60 0.47
4.96 0.45

analysis at each applied pressure for the ambient temperature
run. The x-ray total structure factor SX(k) at each state point
was then obtained by using equation (3) such that

SX(k)− 1 = ( dσ
d
)x − ( dσ

d
)Compton − ∑
α cα fα(k) f ∗

α (k)

|〈 f (k)〉|2 (8)

where |〈 f (k)〉|2 = ∑
α

∑
β cαcβ fα(k) f ∗

β (k).

3.5. Neutron diffraction experiments using a high pressure
set-up

The neutron diffraction experiment on glassy GeS2 at high
pressure and ambient temperature (≈25 ◦C) was made using
a VX5/180 type Paris-Edinburgh (PE) press with two support
pillars and standard single toroid anvils [62] made from
sintered cubic boron nitride (BN) [63] mounted on the
diffractometer D4C [64] at the Institut Laue-Langevin (ILL).
An incident wavelength of 0.6960(1) Å was used to optimize
the incident flux of neutrons and enabled the use of cadmium
(Cd) as an effective shielding material to reduce background
scattering. This background scattering was further reduced by
using neutron absorbing 10B4C slits placed a few cm upstream
of the sample to reduce the vertical divergence of the incident
beam. A pellet of finely powdered glass, pre-compacted to
the correct geometry, was held in a single toroid gasket made
from a Ti–Zr alloy with a mean coherent neutron scattering
length of zero. The gasket and collimation provided by the
neutron absorbing BN anvils defined a cylindrical sample
geometry with the incident and scattered beams in a plane
perpendicular to the axis of the cylinder i.e. they both passed
through the gasket material. The sample diameter and height
under ambient conditions were 6 and 1.6 mm, respectively.

Diffraction patterns were measured for the sample in the
gasket with a small applied load (corresponding to an oil
pressure of 100 bar applied to a piston of area 66.5 cm2) to
ensure that the gasket took the shape of the anvils (effectively
ambient pressure) and at 4.9(5) GPa. The latter was determined
from the load applied to the anvils by using a calibration based
on many neutron diffraction experiments using crystalline
systems with a known equation of state in an otherwise
identical set-up (cf [65]). To estimate the container scattering,
diffraction patterns were measured for an empty uncompressed
(i.e. unsquashed) Ti–Zr gasket and also for several empty Ti–Zr
gaskets that had been recovered from different high pressures.

To assist in the data normalization at different pressures,
diffraction patterns were measured for two differently sized
vanadium pellets in an uncompressed or recovered (i.e. pre-
squashed) Ti–Zr gasket at ambient pressure. In addition, a
diffraction pattern was measured with closed anvils to assist in
estimating the background scattering and, to examine the effect
of sample self-shielding on the background count rate at small
scattering angles [66], diffraction patterns were measured
for two differently sized neutron absorbing Cd pellets in an
uncompressed or recovered Ti–Zr gasket at ambient pressure.
The sample self-shielding correction using Cd was found to be
small and, in practice, the correction was not made.

The data reduction followed a procedure [52] where the
data collected for the sample were corrected for container
and background scattering, taking into account both self-
attenuation and multiple scattering effects, and inelasticity
corrections were applied. The procedure is not, however, trivial
as the scattering geometry changes with pressure (e.g. the
sample compresses as the anvils close) and it is not possible to
make all of the necessary measurements for the data reduction
at each pressure point. The practical details of the data
reduction are given by Drewitt et al [67].

To make a comparison with the ambient pressure PE press
results, the total structure factor for a bulk sample of glassy
GeS2 in a vanadium container (internal diameter 4.8 mm,
wall thickness 0.1 mm) was also measured by using D4C
under ambient conditions with an incident neutron wavelength
of 0.6960(1) Å. The data reduction followed the procedure
described elsewhere [52].

4. Results

4.1. Structure of GeS2 at ambient pressure and temperature by
neutron and x-ray diffraction

The total structure factors SN(k) and SX(k)measured for glassy
GeS2 under ambient conditions are compared in figure 2 and
the first three peak positions are summarized in table 2. Both
functions display a well defined FSDP at kFSDP � 1.02 Å

−1

which, by comparison with the measured partial structure
factors for glassy [14, 15] and liquid GeSe2 [19, 68], will have
a dominant contribution from the Ge–Ge correlations (also see
section 5.1). The FSDP is often associated with oscillations
of periodicity 2π/kFSDP in r space whose extent is controlled
by the correlation length 2π/�kFSDP where �kFSDP is the full
width at half maximum of the FSDP [9]. The latter, obtained
by reflecting the low k side of the FSDP about its maximum, is
0.37(2) Å

−1
for SN(k) and 0.32(2) Å

−1
for SX(k) which give

a mean correlation length of ≈18 Å.
The total pair distribution functions G ′

N(r) and G ′
X(r)

for glassy GeS2 under ambient conditions are shown in
figure 3 and the first few peak positions and nearest-neighbour
coordination number are summarized in table 2. The first
peak in these functions at 2.22(2) Å is assigned to Ge–
S correlations by comparison with the crystal structures
of GeS2 [22, 23, 69–71]. This assignment assumes the
absence of homopolar bonds that are observed in the measured
partial pair distribution functions for glassy GeSe2 [14, 15].
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Table 2. Several of the parameters describing the structure of glassy GeS2. The positions kFSDP, kPP and k3 of the first three peaks in the
measured S(k) functions are given together with the positions rGeS, rGeGe and r3 of the first three peaks in the corresponding G ′(r) functions
and the Ge–S coordination number n̄S

Ge obtained from the first peak in G ′(r). The functions were measured using either neutron diffraction
(ND) or x-ray diffraction (XRD) and all of the measurements were made at ambient temperature.

S(k) G ′(r)
kFSDP (Å

−1
) kPP (Å

−1
) k3 (Å

−1
) rGeS (Å) rGeGe (Å) r3 (Å) n̄S

Ge Method Diffractometer

1.03(1) 2.35(1) 3.70(2) 2.22(2) 2.94(2) 3.46(5) 3.97(5) NDa GEM
1.01(1) 2.30(1) 3.70(2) 2.22(2) 2.94(2) 3.45(2) 4.07(5) XRDa 11-ID-C
1.12(5) 2.20(5) 3.72(5) 2.24(2) — 3.53(2) 3.9(1) XRDb ID30
1.03(2) 2.42(5) 3.75(5) 2.21(2) — 3.46(3) 4.3(2) NDa D4C
1.12(2) 2.52(5) 3.77(5) 2.20(2) — 3.42(3) 4.2(2) NDc D4C

a Ambient pressure.
b Recovered from 4.96(7) GPa.
c In situ at 4.9(5) GPa.

Figure 2. The measured total structure factors SN(k) and SX(k) for
glassy GeS2 at ambient temperature (�25 ◦C) and pressure as
measured by using the neutron diffractometer GEM or the x-ray
diffractometer on beamline 11-ID-C. The vertical bars represent the
measured data points with statistical errors and the solid (red) curves
are the Fourier back-transforms of the corresponding total pair
distribution functions G ′

N(r) or G ′
X(r) given by the solid (black)

curves in figure 3 after the unphysical oscillations at r values smaller
than the distance of closest approach between the centres of two
atoms are set to the calculated G ′

N(r = 0) = G ′
X(r = 0) = 0 limit.

In the case of SN(k) the Fourier back-transform is indistinguishable
from the data points at most k values.

Integration of the first peak in G ′(r) (see appendix A for the
method employed in the case of the x-ray data) then gives
a coordination number n̄S

Ge = 4.02(5) which is consistent
with the formation of tetrahedral Ge(S1/2)4 motifs. The
large measured k range means that a small second peak at
2.94(2) Å in both G ′(r) functions can be clearly resolved and
this is assigned to Ge–Ge correlations between edge-sharing

Figure 3. The measured total pair distribution functions for glassy
GeS2 at ambient temperature and pressure. G ′

N(r) was obtained by
Fourier transforming the SN(k) function of figure 2 after applying a
cosine window function over the range 29.95 � k (Å

−1
) � 34.95

while G ′
X(r) was obtained by Fourier transforming the SX(k)

function of figure 2 after spline fitting and applying a cosine window
function over the range 19.975 � k(Å

−1
) � 25.575. The broken

(red) curves show the extent of the unphysical small r oscillations.

tetrahedral motifs by comparison with the structure of the
high temperature monoclinic α phase of crystalline GeS2 [22].
This phase forms a layered structure in which chains of Ge
centred corner-sharing tetrahedra are cross linked by pairs
of Ge centred tetrahedra that share a common edge. There
are equal numbers of corner- and edge-sharing tetrahedra
and the shortest Ge–Ge distance of 2.92 Å corresponds to
the edge-sharing configuration. For the glass, the peak in
G ′(r) at 2.94 Å is therefore assigned to the distance between
the centres of edge-sharing (ES) tetrahedra and integration

7
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Figure 4. The x-ray total structure factors SX(k) for glassy GeS2 at
ambient temperature (�25 ◦C) and different pressures as measured
by using the x-ray diffractometer on beamline ID30. The data sets
correspond to pressures of 0.11(2), 0.75(2), 1.49(3), 2.08(3), 3.07(4),
3.97(4), 4.60(5) and 4.96(7) GPa. The Bragg peak at ≈2 Å

−1
is the

remaining contribution from the intense BN (002) reflection that is
not completely removed by the correction procedure.

of the unsmoothed functions gives a coordination number
n̄Ge

Ge(ES) of 0.46(5) for G ′
N(r) and 0.48(5) for G ′

X(r). In the
high temperature crystalline phase of GeS2, each Ge atom
in an edge-sharing unit has one nearest-neighbour Ge atom
in the adjacent edge-sharing unit such that the corresponding
coordination number is given by n̄Ge

Ge(ES) = [(number of Ge
atoms in an edge-sharing tetrahedral unit, NGe(ES))×1]/[total
number of Ge atoms in the system, NGe] i.e.

n̄Ge
Ge(ES) = NGe(ES)

NGe
(9)

and, since there are equal numbers of Ge atoms involved
in corner- and edge-sharing tetrahedra, this expression takes
the value of 1/2. Hence if there are no extended chains of
edge-sharing units, use of equation (9) for the glass gives a
ratio NGe(ES)/NGe of 47(5)% which compares with a ratio
of 34(5)% for the case of glassy GeSe2 [14, 15]. The third
peak in the G ′(r) functions at r3 � 3.45 Å will, by comparison
with the structure of glassy GeSe2, have a large contribution
from Ge–Ge and S–S correlations with a mean S–S distance
that is longer than the mean Ge–Ge distance [29]. This
assignment is supported by the asymmetry of the third peak
e.g. a shoulder appears on the high r side of the third peak
in G ′

X(r) at �3.72(5) Å and a corresponding distance of
3.75(5) Å is estimated from G ′

N(r) by peak reflection. If these
longer distances are assigned to the S–S distance within Ge
centred tetrahedra then the ratio rSS/rGeS is 1.689 for G ′

N(r)
and 1.676 for G ′

X(r) which compares with a value of
√

8/3 =
1.633 for regular tetrahedra. Distorted Ge(S1/2)4 tetrahedra
are a feature in both the low and high temperature phases of
crystalline GeS2 [22, 23]. In addition, the inter-tetrahedral
Ge–Ŝ–Ge bond angle, θGeSGe, can be estimated from the Ge–S
and Ge–Ge distances, rGeS and rGeGe, by using the expression
cos(θGeSGe) = 1 − r 2

GeGe/2r 2
GeS [6] whence θGeSGe = 83(1)◦ is

obtained for edge-sharing tetrahedra and, by taking rGeGe = r3,
θGeSGe = 102(2)◦ is obtained for corner-sharing tetrahedra.

Figure 5. The pressure dependence of the position and height of the
first sharp diffraction peak (FSDP) in the total structure factor SX(k)
for glassy GeS2 at ambient temperature as measured using the x-ray
diffractometer on beamline ID30. The vertical and horizontal lines
associated with each data point show the error bars. The closed
symbols correspond to the measured SX(k) functions shown in
figure 4 and the open (red) symbols correspond to a second
experimental run using a smaller sample size (see the text). The light
broken (red) curve shows a linear fit to the FSDP positions for a
pressure range extending from ambient to 3 GPa and the dark broken
(blue) curve is drawn as a guide for the eye.

Thus, the neutron and x-ray data for GeS2 under ambient
conditions both point to a model in which the structure is
dominated by tetrahedral Ge(S1/2)4 motifs in which 47(5)% of
the Ge atoms are involved in edge-sharing connections. These
motifs link to form a network in which there is intermediate
range order, as manifested by the appearance of an FSDP in
the measured total structure factors, which has a dominant
contribution from the Ge–Ge correlations.

4.2. Pressure dependence of the structure of glassy GeS2 at
ambient temperature by x-ray diffraction

Figure 4 shows the SX(k) obtained for glassy GeS2 over
the pressure range 0.11(2) � p(GPa) � 4.96(7) at room
temperature. The measurement at ambient pressure (100 kPa)
is not shown for clarity of presentation but is in good agreement
with the results reported in section 4.1 showing an FSDP at
kFSDP = 1.03(2) Å

−1
. The Bragg peak at ≈2 Å

−1
is the

remaining contribution from the intense BN (002) reflection
from the sample cell that was not completely removed by the
correction procedure. Figure 5 shows the pressure dependence
of kFSDP as determined from a Lorentzian fit. The peak position
moves to higher k with increasing pressure, which is consistent
with a shortening of the periodicity of the corresponding
intermediate range order in real space [9]. The height of
the FSDP is also plotted in figure 5 and remains reasonably
constant up to a pressure of ≈2 GPa before showing a
substantial decrease. This sharp decline is accompanied by
a change in the third peak at k3 ≈ 3.7 Å

−1
which becomes

notably sharper and displaced to higher k. The observed shift
with pressure of the FSDP position to increasing k values, and
the decrease in the FSDP height, are consistent with the results
obtained by Tanaka [36].
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Figure 6. The x-ray total pair distribution functions G ′
X(r) for glassy

GeS2 at ambient temperature and different pressures as obtained by
Fourier transforming the SX(k) functions given in figure 4 after the
application of a Lorch [41] modification function with kmax � 8 Å

−1
.

The small peak at ≈1.2 Å is a Fourier transform artefact.

Figure 6 shows the pair distribution functions G ′
X(r)

obtained from the SX(k) by using equation (6) with a
Lorch [41] modification function. The number densities were
estimated from the values measured for permanently densified
samples that had been subjected to the same pressure and
recovered to ambient conditions [35, 73] (see figure 1). The
measured k range was limited to 0.4 � k(Å

−1
) � 8 and, in

consequence, the peaks in G ′
X(r) are broadened considerably

and do not give precise positions and intrinsic widths. The
first peak in G ′

X(r) at ambient pressure is located at rGeS =
2.18(3) Å as compared to 2.22(2) Å reported in table 2. Within
the resolution of our data, no change was observed in the
position of the first peak with increasing pressure although
there was a steady decrease in its height which suggests
that some broadening takes place. By integrating under the
first peak in G ′

X(r) and assuming that it corresponds solely
to Ge–S correlations, a coordination number n̄S

Ge = 4.0(5)
was obtained by using the method outlined in appendix A.
However, the peak width and overlap with the second peak
do not allow us to make any observations concerning a
change in coordination number with pressure and a peak at
≈2.9 Å associated with edge-sharing tetrahedra could not be
resolved. The peaks at 3.57(3) and 5.65(5) Å in G ′

X(r) at
ambient pressure shift to 3.47(3) and 5.35(5) Å at 4.96 GPa,
respectively.

4.3. Structure of glassy GeS2 recovered from 4.96(7) GPa by
x-ray diffraction

At the end of the first experimental run, the pressure was
released and the sample was recovered from the pressure
cell. The recovered sample was homogeneous and dark
brown in colour compared to the yellow colour of the as-
prepared sample. This change of appearance is consistent
with a red shift in the optical absorption edge in densified

Figure 7. The solid (black) curves give the total structure factor
SX(k) (upper panel) and corresponding total pair distribution function
G ′

X(r) (lower panel) as measured using the x-ray diffractometer on
beamline ID30 for a sample of glassy GeS2 recovered to ambient
conditions after pressurization at 4.96(7) GPa. In the lower panel, the
broken (red) curve shows the extent of the unphysical small r
oscillations. For comparison, the broken (blue) curve shows SX(k)
for as-prepared GeS2 under ambient conditions (see figure 2) or the
corresponding G ′

X(r) as obtained by Fourier transforming SX(k) after

truncating at the same value (kmax = 15.5 Å
−1

) as for the ID30 data.

and glassy GeS2 [21, 35, 72]. The recovered sample was
mounted on the diffractometer, without the pressure cell and
oscillating radial collimator system, and diffraction patterns
of the unencumbered sample were acquired for incident
wavelengths of 0.3311 and 0.1582 Å to obtain high counting
statistics over a wide k range. Several of the parameters
describing the structure are listed in table 2 and a number
density of n0 = 0.041 Å

−3
was estimated from the measured

density for a GeS2 glass compacted at 5 GPa and recovered to
ambient conditions [35, 73] (see figure 1).

Figure 7 shows the SX(k) measured for the recovered
sample over the range 0.5 � k(Å

−1
) � 15.5. The FSDP

in SX(k) is at 1.12(5) Å
−1

indicating that the glass has
not recovered to its original state, in agreement with the
experiments on recovered glasses reported by Miyauchi et al
[35]. The FSDP position corresponds to a pressure of about
3 GPa for the samples studied in situ (see figure 5) which
may indicate that there are structural similarities between
the recovered sample and the glass at this pressure. The
corresponding total pair distribution function G ′

X(r) is also
shown in figure 7. The increased measurement k range gives an
improved resolution of the features in G ′

X(r). Clearly resolved
peaks are found at 2.24(2), 3.53(2) and 5.47(5) Å and there is,
perhaps, a shoulder at ≈2.9 Å which suggests the presence of
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edge-sharing tetrahedra in the recovered sample. The first peak
in G ′

X(r) gives a coordination number n̄S
Ge = 3.9(1).

4.4. Structure of GeS2 at high pressures and high
temperatures by x-ray diffraction

In the second experimental run, diffraction patterns were
again recorded for glassy GeS2 as the sample was pressurized
from 100 kPa to 4.7(1) GPa at room temperature. Due
to the smaller sample size the scattering from the sample
container (which now incorporated a graphite heater) and
gasket was more significant than for the first run but the
results were, nevertheless, consistent. The sample was then
heated and remained glassy with no observable change in the
FSDP position or height until a pressure of 5.2(1) GPa and
a temperature of 828(50) K was obtained. At this point the
sample crystallized and examination of the image plate showed
significant texturing with some isolated Bragg spots in the
Debye–Scherrer rings. It was, however, possible to obtain
the crystal structure which is described in section 4.5. A
transformation to the same crystal structure, after treatment of
the glass at 6 GPa and 873 K, is reported by Miyauchi et al
[35] although details are not given.

On further heating this crystalline phase was observed to
disappear in the powder pattern at 5.1(1) GPa and 1048(50) K.
Examination of the image plate showed little evidence of
any continuous Debye–Scherrer rings and a large number of
individual Bragg spots suggesting that the sample had annealed
to form a small number of large and highly oriented crystals.
Finally as the temperature of the sample reached 1054(50) K
at 4.9(1) GPa virtually all of the Bragg spots had disappeared
and a larger diffuse background was observed on the image
plate suggesting that the majority of the sample had at this
stage melted. Examination of the powder pattern confirmed the
underlying liquid-like structure with the first peak at ≈2 Å

−1
.

However, there was no evidence of any FSDP at ≈1 Å
−1

as
observed in the glass and liquid [74] at ambient pressures.
The sample was then quenched at this pressure to ambient
temperature in about 5 min and the pressure on the sample was
then reduced to ≈1.5 GPa. Bragg diffraction from large and
highly oriented crystallites was observed on the image plate.

4.5. Structure of crystalline GeS2 at 5.2(1) GPa and 828(50) K

A set of clearly distinguishable peak positions was located, by
taking the second derivative of the intensity I (2θ) collected
in situ after devitrification, and the peak profiles were fitted
by using a pseudo-Voigt function. The peak positions were
automatically indexed, with the wavelength fixed at 0.3311 Å,
using CRYSFIRE [75] which gave centred and primitive
tetragonal cells with a high figure of merit e.g. the ITO
program [76] gave FoM(20) = 93.8 for cell parameters a =
c = 7.0365 Å, b = 9.5313 Å; the TREOR program [77]
gave M(20) = 48, F(20) = 127(0.001581, 100) for a =
b = 4.9773 Å, c = 9.5376 Å; and the TAUP program [78]
gave F(20) = 28.57 for an I -centred unit cell with a = b =
4.9763 Å, c = 9.5383 Å. We proceeded with the smallest cell
with highest implied symmetry and used CHEKCELL [79] for

Figure 8. The result of the final Rietveld refinement of x-ray
diffraction data, taken for GeS2 in situ at 5.2(1) GPa and 828(50) K,
using GSAS with 20 fitted parameters. The measured intensity I (2θ)
is plotted as the ordinate and the scattering angle 2θ is plotted as the
abscissa. The (red) crosses represent the measured data points, the
solid (green) curve represents the fit, the displaced (purple) curve
gives the residual and the vertical markers indicate Bragg peak
positions.

space group determination. The best estimated space group,
corresponding to the highest number of checked reflections
and lowest number of calculated reflections, was I 41/amd .
However, we preferred the acentric space group I 4̄2d as it gave
an equivalent error for only three more calculated reflections.
A Le Bail [80] fit in GSAS [81] using 9 fitted parameters (2
cell, 5 background and 2 peak shape parameters) allowed us to
refine the cell parameters using this symmetry choice. The fit
gave a = b = 4.97697(17) Å and c = 9.5353(5) Å with a cell
volume V = 236.193(17) Å

3
which corresponds to a volume

per formula unit (f.u.) of 236.193/Z or ≈59 Å
3

f.u.−1 where,
considering the density and space group symmetry, Z is most
likely equal to 4.

We point out that a similar cell and lattice with I 4̄2d
symmetry has previously been observed by Prewitt and
Young [70] for a sample of GeS2, recovered to ambient
conditions after synthesis at high pressure and temperature,
and also by Grande et al [82] for the selenide analogue GeSe2

as prepared at 3 GPa and 773 K and recovered to ambient
conditions. Shimada and Dachille [34] have also reported
formation of the Prewitt and Young phase after heat treatment
of glassy GeS2 at 400–500 ◦C under a pressure in the range
1–5 GPa for a period of 2–4 days. Prewitt and Young [70]
described the I 4̄2d structure with Ge on a 4a site at (0, 0, 0)
and S on a 8d site at (x, 1

4 ,
1
8 ). We used these cell coordinates

as initial atomic positions and refined the in situ diffraction data
using GSAS. The fit gave Rietveld profile reliability factors of
wRp = 0.1212 and Rp = 0.0857 or, for the data with the
background subtracted, wRp = 0.1059 and Rp = 0.0781 with
reduced χ2 = 0.763 for 20 fitted parameters. The fitted data
are shown in figure 8 and the fitted parameters are summarized
in table 3. The region for scattering angles 2θ = 5.9–6.5◦
was excluded from the fit due to the presence of BN (002) and
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Table 3. Crystal structure data for GeS2 at 5.2(1) GPa and 828(50) K as obtained from the final GSAS refinement. The three symbols after
Ge and S denote the multiplicity of the Wyckoff position, the Wyckoff letter and site symmetry [87]. The ui j are the refined anisotropic
temperature factors. (Space group number 122, I 4̄2d , has 16 general positions: (0, 0, 0)+ and ( 1

2 ,
1
2 ,

1
2 )+ x, y, z; −x,−y, z; y,−x ,

−z;−y, x,−z; −x + 1
2 , y,−z + 3

4 ; x + 1
2 ,−y,−z + 3

4 ;−y + 1
2 ,−x, z + 3

4 ; y + 1
2 , x, z + 3

4 .)

Space group I 4̄2d (no 122)
a (Å) 4.97704(12)
c (Å) 9.5355(4)

Volume, V (Å
3
) 236.204(12)

Z 4
Formula weight per Z (g) 136.72
Calculated density (g cm−3) 3.845
Ge 4 a 4̄..
x, y, z 0 0 0

u11, u22, u33 (Å
2
) 0.0654(9) 0.0654(9) 0.0757(14)

u12, u13, u23 (Å
2
) 0 0 0

S 8 d .2.
x, y, z 0.2565(6) 1/4 1/8

u11, u22, u33 (Å
2
) 0.064(5) 0.145(6) 0.126(4)

u12, u13, u23 (Å
2
) 0 0 0.041(3)

Overall 2θ range 3◦–24◦
2θ region excluded from fit 5.9◦–6.5◦

BN (002) and graphite (002)
Number of fitted data points 2832
Number of calculated reflections 81

graphite (002) peaks from the container materials (the intensity
of both peaks was <10% of the maximum peak intensity).

An analysis using DISAGL [81] shows a 3D structure
made from corner-sharing Ge centred tetrahedra (see figure 9)
with 4 Ge–S bond lengths of 2.144(2) Å and a S–Ge–S bond
angle of 108.00(3)◦. The bond angle Ge–S–Ge between
adjacent tetrahedra is 106.9(1)◦. By comparison, the structure
of the recovered material studied by Prewitt and Young [70]
had a Ge–S bond length of 2.2123 Å with S–Ge–S and
Ge–S–Ge bond angles of 105.7◦ and 107.5◦, respectively.
The nearest-neighbour bonds are therefore shortened and the
tetrahedra are more regular at high pressure and temperature
whereas the angle between adjacent tetrahedra is slightly more
distorted. The structure is of the SiS2-type which is shared by
α-ZnCl2 [83–85] and GeSe2 [82]. The calculated density of
the high pressure and temperature phase, ρ = 3.845 g cm−3,
is ≈30% greater than the monoclinic phases of GeS2 [22, 23]
where V/Z = 75.8 Å

3
f.u.−1 for the Pc structure and

77.3 Å
3

f.u.−1 for the high temperature P21/c structure. It is
also 20% greater than that of the expanded tetragonal structure
for GeS2 reported by MacLachlan et al [71] (ZnBr2-type
structure with V/Z = 71.6 Å

3
f.u.−1) and approximately 16%

more compressed than the ambient determination of the same
SiS2-type structure by Prewitt and Young [70].

We note that GeSe2 has shown evidence for other 3D
structures in tetragonal subgroups of I 4̄2d [86] under high
pressure and temperature conditions. These structures are
extremely difficult to distinguish from the I 4̄2d structure by
powder diffraction methods. Any distortion due to lowering of
the site symmetry is minute and, consequently, any breaking
of the 00l: l = 4n or hkl: h + k + l = 2n reflection
conditions for the I 4̄2d space group [87] will lead to peaks
with very small diffraction intensities (e.g. the (002) reflection
for the I 4̄ (and P 4̄) structure or the (003) reflection for the P 4̄

Figure 9. Polyhedral representation of the I 4̄2d structure for GeS2,
with the c-axis vertical, showing the corner-sharing linkages between
adjacent Ge centred tetrahedra.

structure). Despite having no evidence for these reflections,
we considered it prudent to refine the experimental data for
GeS2 using the parameters given by Grzechnik et al [86]
with our previously refined tetragonal cell parameters as initial
values. The resulting fits gave an improvement by ≈1% in
the Rietveld profile reliability factors but there was an increase
in the number of fitting parameters and the refinement led to
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short Ge–S bond lengths <2.0 Å. We therefore prefer our
assignment of the I 4̄2d structure for GeS2 at 5.2(1) GPa and
828(50) K.

4.6. Pressure dependence of the structure of glassy GeS2 at
ambient temperature by neutron diffraction

The total structure factors SN(k) measured for glassy GeS2 in
the PE press on D4C at ambient pressure and at 4.9(5) GPa
are illustrated in figure 10. In the correction procedure the
number density of the glass was taken to be 0.0359(1) Å

−3
at

ambient pressure [26] and was estimated to be 0.0436 Å
−3

at
4.9 GPa from the density measured by Prewitt and Young [70]
(see figure 1). Several of the parameters describing the
structure are listed in table 2. In figure 10 the data are
compared with the SN(k) function measured in the present
work for a bulk sample of GeS2 at ambient pressure using
the same neutron diffractometer D4C with the same incident
neutron wavelength. The ambient pressure SN(k) function
measured with the PE press shows some troughs/peaks at
≈2.70 and 4.85 Å

−1
and other features that result from an

incomplete subtraction of the Ti–Zr gasket scattering (the
empty gasket used for the container measurement at ambient
pressure was not identical to the gasket used for the sample
run). Nevertheless, the ambient pressure data sets are in
agreement within the experimental error at most k values and
the FSDP position at 1.03(2) Å

−1
is in agreement with the

results given in section 4.1, indicating that the method used
to pre-compress the powder pellet for the PE press had little
effect on the structure of the illuminated portion of the glass.
With pressure increasing to 4.9 GPa, the FSDP moves to
1.12(2) Å

−1
and its intensity decreases significantly, whereas

the third peak moves from 3.75(5) to 3.77(5) Å
−1

and its
intensity increases. The data therefore follow the same trends
with increasing pressure that were reported for the measured
SX(k) functions in section 4.2. As found in the x-ray diffraction
experiment of section 4.3, the recovered sample was dark
brown in colour.

Figure 11 shows the total pair distribution functions G ′
N(r)

measured in situ for glassy GeS2 at ambient pressure and at
4.9(5) GPa while table 2 lists several of the corresponding
parameters. The data are compared with the G ′

N(r) function
measured for a bulk GeS2 sample at ambient pressure, obtained
by Fourier transforming the SN(k) function shown in figure 10
with the same cut-off value kmax = 15.45 Å

−1
. This k range

is too small to enable the Ge–Ge correlations for edge-sharing
tetrahedra to be resolved at ≈2.9 Å. The nearest-neighbour
Ge–S distance and coordination number show little change as
the pressure is increased to 4.9 GPa while the peak initially at
r3 = 3.46(3) Å broadens and shifts to a smaller distance of
3.42(3) Å.

We note that the value obtained for the coordination
number n̄S

Ge at high pressure depends on the value used for the
number density in the data analysis procedure. For example,
if n0 = 0.051 Å

−3
corresponding to the density measured

in the present work for crystalline GeS2 at high pressure and
high temperature (see section 4.5), then the data corrections

Figure 10. The total structure factors SN(k) for glassy GeS2 at
ambient temperature (�25 ◦C) as measured by using the neutron
diffractometer D4C with the Paris-Edinburgh press at either (a)
ambient pressure or (b) 4.9(5) GPa. The vertical bars represent the
measured data points with statistical errors, and the solid (red) curves
are the Fourier back-transforms of the corresponding total pair
distribution functions G ′

N(r) given by the solid (black) curves in
figure 11 after the unphysical oscillations at r values smaller than the
distance of closest approach between the centres of two atoms are set
to the calculated G ′

N(r = 0) = 0 limit. For reference, the SN(k)
function measured for a bulk sample of GeS2 under ambient
conditions by using the same neutron diffractometer D4C with the
same incident wavelength is given by the broken (blue) curve in both
(a) and (b) (see the text).

change and a higher coordination number n̄S
Ge = 4.9(2) is

obtained. This coordination number does, however, correspond
to an unchanged Ge–S bond length of 2.20(2) Å whereas
an increase in bond length with an increase of coordination
number is anticipated since the radius of the Ge nearest-
neighbour coordination shell should lengthen to accommodate
additional S atoms.

5. Discussion

5.1. Structure of glassy GeS2 under ambient conditions

The results for the structure of glassy GeS2 under ambient
conditions can be readily discussed by comparing the measured
total structure factors, SN(k) and SX(k), and corresponding
total pair distribution functions, G ′

N(r) and G ′
X(r), with

their reconstruction from the measured partial pair correlation
functions for glassy GeSe2 [14, 15]. The comparison of the
reciprocal space data sets in figure 12 shows that the main
features of the total structure factors are reproduced from the
measured Sαβ(k) for GeSe2. The dominant contribution to
the FSDP in both SN(k) and SX(k) arises from the Ge–Ge
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Figure 11. The total pair distribution functions G ′
N(r) (solid (black)

curves) for glassy GeS2 at ambient temperature as measured by using
D4C with the Paris-Edinburgh press at either (a) ambient pressure or
(b) 4.9(5) GPa. In (a) G ′

N(r) was obtained by Fourier transforming
the SN(k) function of figure 10(a) after spline fitting and in (b) G ′

N(r)
was obtained by Fourier transforming the SN(k) function of
figure 10(b) after spline fitting and applying a cosine window
function over the range 13.95 � k(Å

−1
) � 15.45. The dotted (red)

curves show the extent of the unphysical low r oscillations. For
reference, the G ′

N(r) function measured for a bulk sample of GeS2

under ambient conditions is given by the broken (blue) curve and was
obtained by Fourier transforming the corresponding SN(k) given in
figure 10 after truncation at the same maximum k value as the PE
press data.

correlations and there is also a small contribution from the Ge–
S correlations. The principal peak is relatively small owing to
a near cancellation of peaks in SGeGe(k) and SSS(k) by a trough
in SGeS(k). In real space (figure 13), the first peak in G ′(r)
is dominated by nearest-neighbour Ge–S correlations and the
peak from the Ge–Ge distance in edge-sharing tetrahedra is
not particularly pronounced owing to the Fourier transform
artefacts that arise from the small kmax value. The next
peak in G ′(r) has a contribution from both Ge–Ge and S–S
correlations with a shorter mean Ge–Ge distance.

The peak positions and coordination numbers obtained
from the present work (section 4.1 and table 2) are consistent
with other studies. For example, previous neutron diffraction
work gives an FSDP at 1.02–1.04 Å

−1
[29, 88] with a

principal peak at 2.35(2) Å
−1

[29]. In real space, most
neutron and x-ray diffraction and extended x-ray absorption
fine structure (EXAFS) studies give a nearest-neighbour Ge–
S distance of 2.21–2.23 Å with a corresponding coordination
number n̄S

Ge � 4 [26, 28, 29, 89–91]. The Ge–Ge distance

Figure 12. Reconstruction of the measured total structure factors
(a) SN(k) and (b) SX(k) for glassy GeS2 under ambient conditions
from the measured partial structure factors for glassy GeSe2 [14, 15].
In (a) the upper solid dark (black) curve gives the SN(k) function
measured by Petri and Salmon [29] plotted against the scaled
scattering vector krGeS with rGeS = 2.21 Å. The upper solid light
(red) curve gives the reconstruction of SN(k) from the sum of the
three weighted partial structure factors measured for glassy GeSe2

where c2
Ge fGe(k)2SGeGe(k)/〈 f (k)〉2 (solid dark (black) curve),

2cGecS fGe(k) fS(k)SGeSe(k)/〈 f (k)〉2 (solid light (green) curve) and
c2

S fS(k)2SSeSe(k)/〈 f (k)〉2 (broken (blue) curve) and their sum are all
plotted against krGeSe with rGeSe = 2.36 Å. The three weighted
partial structure factors are displaced vertically by −0.5 for clarity of
presentation. The measurements for GeS2 and GeSe2 were made
using the same neutron diffractometer (D4B) with the same incident
wavelength. The curves in (b) have the same identity as in (a) except
that the upper solid dark (black) curve gives the SX(k) function
measured in the present work (see figure 2) and rGeS = 2.22 Å. In (a)
the fα(k) represent the (k-independent) coherent neutron scattering
lengths [42] and in (b) they represent the x-ray form factors [54].

for edge-sharing tetrahedra is reported to be in the range
2.89–2.95 Å [28, 90, 91] and the corresponding coordination
number n̄Ge

Ge(ES) is quoted to be 0.30(6) [90], 0.44(3) [91]
or 0.50(3) [28] where the value of n̄Ge

Ge(ES) = 0.44(3) was
obtained from neutron diffraction results in which the edge-
sharing Ge–Ge peak could be resolved in the real space
total pair correlation function [91]. The next longest Ge–
Ge distance is reported to be in the range from 3.44(2) [90]
to 3.47(2) Å [28] as compared to the value of 3.45(2)–
3.46(5) Å obtained in the present work. Raman and Mössbauer
spectroscopic studies point to the existence of Ge–Ge and S–S
homopolar bonds [44, 48, 92] (although the presence of Ge–
Ge bonds has recently been disputed [93]) but they appear
as a small fraction of the total number of heteropolar Ge–S
bonds [29, 48].
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Figure 13. Reconstruction of the measured total pair distribution
functions (a) G ′

N(r) and (b) G ′
X(r) for glassy GeS2 under ambient

conditions from the measured partial pair distribution functions for
glassy GeSe2 [14, 15]. In (a) the upper solid dark (black) curve gives
the G ′

N(r) function measured by Petri and Salmon [29] plotted
against the scaled distance r/rGeS with rGeS = 2.21 Å. The upper
solid light (red) curve gives the reconstruction of G ′

N(r) from the
sum of the three weighted partial pair distribution functions
measured for glassy GeSe2, as obtained by Fourier transforming the
weighted Ge–Ge (solid dark (black) curve), Ge–Se (solid light
(green) curve) and Se–Se (broken (blue) curve) partial structure
factors given in figure 12(a), where all four functions are plotted
against r/rGeSe with rGeSe = 2.36 Å. The three weighted partial pair
distribution functions are displaced vertically for clarity of
presentation. The curves in (b) follow the labelling in (a) except that
the upper solid dark (black) curve gives the G ′

X(r) function obtained
in the present work by Fourier transforming SX(k) given in figure 2
(after truncation at kmax = 15.9 Å

−1
to match the limit used in [29])

and rGeS = 2.22 Å. The agreement between G ′(r) and its
reconstruction from the gαβ(r) for GeSe2 in the region of the peak at
r/rGeX � 1.55 can be improved by using the weighted gGeGe(r) and
gSeSe(r) functions as plotted against the scaled distances r/rGeGe and
r/rSeSe, respectively, where rGeGe and rSeSe are the nearest-neighbour
(homopolar) bond lengths [29].

5.2. Structure of GeS2 under pressure

On pressurizing glassy GeS2 to �5 GPa at ambient
temperature, the most dramatic changes observed in SX(k) and
SN(k) are a steady shift in position of the FSDP to larger k
values and, on increasing the pressure beyond ≈2 GPa, a rapid
reduction of the FSDP height (see figures 4 and 5). As shown in
figure 12, this can be attributed to a change in the intermediate
range order associated with the Ge–Ge correlations i.e. to a
reorganization in the arrangement of Ge(S1/2)4 tetrahedra. The
real space results do not show a change in position of the
first peak in G ′

X(r) or G ′
N(r) with increasing pressure but

the peak at �3.45 Å does move to a smaller distance and
the peak at �5.4 Å shifts to �5.3 Å (see figure 11). The
consistency in value of the nearest-neighbour Ge–S distance
and corresponding coordination number n̄S

Ge � 4 leads to
the conclusion that the local tetrahedral motifs remain intact
at pressures up to �5 GPa. The reconstruction of the G ′(r)
functions from the measured partial pair distribution functions
for glassy GeSe2 shows that the shift in the peak at �3.45 Å to
small r is most likely associated with the Ge–Ge correlations
(figure 13) and therefore with the change in properties of
the FSDP with increasing pressure. This shift might arise
from a lengthening of the short Ge–Ge distances in edge-
sharing tetrahedra as they transform to corner-sharing motifs
and/or a decrease in the Ge–S–Ge angle between corner-
sharing tetrahedra. However, the mean Ge–S–Ge bond angle
of 102(3)◦ estimated from the peak positions rGeS and r3

measured by neutron diffraction for the glass at 4.9(5) GPa
(see table 2) does not appear to have changed from its
ambient pressure value (see section 4.1). This may result
from an increasing overlap with pressure between the nearest-
neighbour Ge–Ge and S–S correlations that renders unsafe
the assignment of r3 solely to Ge–Ge correlations. The
peak initially at �5.4 Å arises from the Ge–S correlations
(figure 13). On recovering the glass from �5 GPa to ambient,
the comparison of figure 7 suggests that the local ordering is
restored, although there is perhaps a small elongation of the
Ge–S bond length to 2.24(2) Å, but the intermediate range
order remains permanently changed as shown by the shift in
position and intensity of the FSDP (table 2). A hysteresis in the
pressure dependence of the optical properties of glassy GeS2 is
also observed [21, 72]. On heating the glass at �5 GPa, the
system crystallizes to form a 3D structure comprising corner-
sharing Ge(S1/2)4 tetrahedra (see figure 9).

EXAFS results for glassy GeS2 samples, pressurized to
6 GPa and recovered to ambient conditions, show an increase
in the Ge–S bond distance from 2.224(1) to 2.231(1) Å while
the coordination number remains at n̄S

Ge � 4, an observation
that is supported by complementary x-ray diffraction and
Raman spectroscopy studies [35]. X-ray diffraction and sulfur
K-edge x-ray absorption near edge structure (XANES) studies
of the densified samples suggest a reduction in the number
of edge-sharing Ge–Ge configurations with increasing applied
pressure [35]. In situ EXAFS studies of glassy GeS2 show a
reduction of the Ge–S bond length from 2.225 Å at ambient
pressure to 2.200 Å at 8 GPa while annealing at this elevated
pressure at 270 ◦C leads to a small elongation of the bond
length to 2.205 Å [94]. On recovery to ambient conditions,
the final bond length of 2.234 Å was longer than the initial
bond length, in agreement with earlier observations made by
the same authors [35]. During this treatment of the glass the
Ge–S coordination number remained more-or-less the same at
n̄S

Ge � 4. The increase in the Ge–S bond length on recovery to
ambient conditions was attributed to a change in competition
between ordering on the local and intermediate atomic length
scales [94].

Raman spectroscopy experiments on glassy GeS2 under
hydrostatic conditions at 300 K show a shift of the A1

mode, which is assigned to the symmetric breathing vibrations
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of S atoms in corner-sharing Ge(S1/2)4 tetrahedra, from
342(1) cm−1 at ambient pressure to a higher frequency of
358(4) cm−1 at 10.8 GPa [95, 96]. This shift is attributed to
a decrease of the Ge–S bond length with increasing pressure.
The companion Ac

1 mode in the ambient pressure spectra at
�374 cm−1, which is assigned to the symmetric stretching
vibrations of S atoms in the bridges of edge-sharing Ge(S1/2)4
tetrahedra, no longer appears as a distinct feature at a pressure
≈6 GPa. The Ac

1 mode does, however, reappear when the glass
is recovered to ambient conditions from 10.8 GPa [95]. Similar
observations were made by Weinstein and Slade [97] for glassy
GeS2 under hydrostatic conditions at 13 K and pressures up to
5.6 GPa. These authors also investigated the pressure induced
peak broadening.

Raman scattering and optical absorption spectra for the
high temperature crystalline monoclinic α phase of GeS2 at
300 K under hydrostatic conditions indicate a phase transition
at ≈9 GPa [98] to the tetragonal γ phase of Prewitt and
Young [70] i.e. the edge-sharing Ge(S1/2)4 tetrahedra in the
two-dimensional layered crystal structure of the α phase
transform into corner-sharing Ge(S1/2)4 tetrahedra in the three-
dimensional structure of the γ phase. A further transition
with increasing pressure takes place at ≈15 GPa to a highly
disordered (possibly amorphous) phase [98]. In the case of
the low temperature crystalline monoclinic β phase, similar
measurements show a phase change at 11.0(5) GPa into an
unknown structure [21].

5.3. Comparison between the structures of glassy GeS2 and
GeSe2 under pressure

The structure of glassy GeSe2 with pressure increasing to
9.3 GPa has been investigated by in situ x-ray diffraction at
ambient temperature [16]. The FSDP at kFSDP = 1.010(5) Å

−1

at ambient pressure shifts to higher k values with increasing
pressure and its intensity decreases so that the peak almost
disappears by 9.3 GPa. In comparison, the principal peak that
is initially at 2.042(5) Å

−1
shifts to 2.262(5) Å

−1
and its height

increases. In real space, the mean Ge coordination number
increases from 4.0(2) at a mean distance of 2.364(5) Å to 4.5(2)
at a mean distance of 2.376(5) Å as the pressure is increased
from ambient to 9.3 GPa and the peak initially at 3.90(1) Å
in r G ′

X(r) broadens and shifts to 3.62(2) Å. The results are
consistent with the occurrence of two densification processes,
namely a conversion from edge-sharing to corner-sharing
Ge(Se1/2)4 tetrahedra and a gradual increase in the mean
coordination number with increasing density. A competition
between these mechanisms is attributed to a minimum in
the network rigidity at about 3 GPa [99]. A decrease in
the number of edge-sharing motifs relative to corner-sharing
motifs with pressure increasing to ≈3 GPa is supported by
Raman spectroscopy results [100].

The results for glassy GeSe2 can be readily discussed
by comparing the measured total structure factors, SN(k) and
SX(k), and corresponding total pair distribution functions,
G ′

N(r) and G ′
X(r), with their reconstruction from the measured

partial pair correlation functions for this material under
ambient conditions [14, 15]. By contrast to GeS2, the neutron

Figure 14. Reconstruction of the measured total structure factors (a)
SN(k) and (b) SX(k) for glassy GeSe2 under ambient conditions from
the measured partial structure factors for this material [14, 15]. In (a)
the upper solid dark (black) curve gives the SN(k) function measured
by Petri et al [14, 15] for a GeSe2 sample containing Ge and Se of
natural isotopic abundance. The upper solid light (red) curve gives
the reconstruction of SN(k) from the sum of the three weighted
partial structure factors c2

Ge fGe(k)2SGeGe(k)/〈 f (k)〉2 (solid dark
(black) curve), 2cGecSe fGe(k) fSe(k)SGeSe(k)/〈 f (k)〉2 (solid light
(green) curve) and c2

Se fSe(k)2SSeSe(k)/〈 f (k)〉2 (broken (blue) curve).
The SN(k) function and partial structure factors were all measured as
part of the same experiment using the same neutron diffractometer
(D4B) so that the total structure factor and its reconstruction are
identical. The three weighted partial structure factors are displaced
vertically by −0.5 for clarity of presentation. The curves in (b) have
the same identity as in (a) except that the upper solid dark (black)
curve gives the SX(k) function measured using 11-ID-C following
the procedure described in section 3.2 (the glass was prepared using
the method given in [15]). In (a) the fα(k) represent the
(k-independent) coherent neutron scattering lengths [42] and in (b)
they represent the x-ray form factors [54].

scattering length for Se (bSe = 7.970(9) fm cf bS =
2.847(1) fm [42]) and its atomic form factor ( fSe(k) = 34
cf fS(k) = 16 electron units at k = 0) are much larger
than for S which gives an increased weighting factor for those
correlations involving the chalcogen atom.

In reciprocal space, the comparison of figure 14 shows
that the FSDP in both SN(k) and SX(k) has an almost equal
contribution from the Ge–Ge and Ge–Se correlations i.e. it
is not dominated by the Ge–Ge correlations as in the case
of GeS2 (figure 12) which accounts for its smaller relative
height. By comparison, the larger weighting given to the
Se–Se correlations leads to a relatively intense principal peak
at �2.04 Å

−1
. The changes with pressure associated with

the FSDP in GeSe2 are therefore related to an alteration of
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Figure 15. Reconstruction of the measured total pair distribution
functions (a) G ′

N(r) and (b) G ′
X(r) for glassy GeSe2 under ambient

conditions from the measured partial pair distribution functions for
this material [14, 15]. In (a) the upper solid dark (black) curve gives
the G ′

N(r) function obtained by Fourier transforming the SN(k)
function of figure 14(a) and the upper solid light (red) curve (which
in this case is indistinguishable from the upper solid dark (black)
curve) gives the reconstruction of G ′

N(r) from the sum of the three
weighted partial pair distribution functions obtained by Fourier
transforming the weighted Ge–Ge (solid dark (black) curve), Ge–Se
(solid light (green) curve) and Se–Se (broken (blue) curve) partial
structure factors given in figure 14(a). The three weighted partial pair
distribution functions are displaced vertically for clarity of
presentation. The curves in (b) follow the labelling in (a) except that
the upper solid dark (black) curve gives the G ′

X(r) function obtained
in the present work by Fourier transforming SX(k) given in
figure 14(b) after truncation at kmax = 15.9 Å

−1
to match the limit

used in [14, 15].

the intermediate range order associated with Ge correlations.
These changes do occur, however, at a slower rate by
comparison with glassy GeS2 which suggests a concomitant
slower rate for the structural reordering. For example, the rate
of change of the FSDP position is �0.023 Å

−1
GPa−1 for

GeSe2 [16] and �0.031 Å
−1

GPa−1 for GeS2 (see figure 5).
Also, an extrapolation of the FSDP height for GeS2 in figure 5
suggests that this peak would finally disappear at ≈7.8 GPa, a
pressure lower than the 9.3 GPa for which an FSDP in GeSe2

still remains. In real space, the comparison of figure 15 shows
that the Se–Se correlations within tetrahedral motifs give the
major contribution to the peak at �3.9 Å and will therefore
dominate the shifts observed in the second peak with increasing
pressure. This contrasts with the case of glassy GeS2 where the
Ge–Ge and S–S correlations have an almost equal weighting
(figure 13).

6. Conclusions

Germanium disulfide provides an excellent test bed for
investigating the nature of structural transformations in
chalcogenide materials. The in situ x-ray and neutron
diffraction studies show that the glass structure is based on
Ge(S1/2)4 tetrahedra at pressures up to �5 GPa and that
the position of the second peak in G ′(r), which has a large
contribution from Ge–Ge correlations, reduces with increasing
pressure. The latter may result from a lengthening of short
Ge–Ge distances in edge-sharing tetrahedra as they transform
to corner-sharing tetrahedra and/or a decrease in the Ge–Ŝ–Ge
inter-tetrahedral bond angle between corner-sharing motifs. A
conversion from edge-sharing to corner-sharing tetrahedra with
increasing pressure is suggested by other x-ray diffraction and
XANES studies [35] and the Ac

1 mode in Raman spectra, which
is a signature of edge-sharing tetrahedra, no longer appears as
a distinct feature at ≈6 GPa [95]. A conversion from edge-
sharing to corner-sharing tetrahedra with increasing pressure
is reported for glassy GeSe2 [16, 100]. With increasing
temperature at a pressure of �5 GPa, the GeS2 system
crystallizes to form the tetragonal space group I 4̄2d wherein
corner-sharing Ge(S1/2)4 tetrahedra pack to form a dense 3D
network. It is notable that of the GeS2 crystalline polymorphs,
the structure with the smallest density corresponds to the 2D α
phase which contains edge-sharing motifs (see figure 1).

Further information on the transformations that occur in
the glass would be provided by in situ diffraction experiments
that access a large scattering vector range, thereby improving
the resolution in real space. Issues to be addressed include
the relation between glass structure and network rigidity with
increasing pressure [101, 102]. Additional information on
densification mechanisms would be provided by using ab initio
methods and some exploratory work, to study the structural,
vibrational and electronic properties of the GeS2 system at
ambient pressure, has been made [93, 103–108]. Indeed, since
the present manuscript was submitted, ab initio molecular
dynamics methods have now been applied to study several of
the properties of GeS2 at pressures up to 60 GPa [109]. A
detailed account of this material in the pressure–temperature
regime studied in the present work was not, however, given.
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Appendix A. The Fourier transformation of x-ray
total structure factors and the extraction of
coordination numbers

The expression that relates a partial structure factor Sαβ(k) to
the partial pair distribution function gαβ(r) for an isotropic
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system is the sine Fourier transform

gαβ(r)− 1 = 1

2π2n0 r

∫ ∞

0
dk k[Sαβ(k)− 1] sin(kr) (A.1)

where n0 is the atomic number density. This equation can be
re-written as the Fourier transform

−2π in0 r [gαβ(r)−1] = 1

2π

∫ ∞

−∞
dk k[Sαβ(k)−1] exp(−ikr)

(A.2)
where Sαβ(k) has been extended to negative argument by
defining it as an even function and i = √−1. If a modification
function M(k) is included, the x-ray total structure factor given
by equation (3) can be re-defined as

S′
X(k)− 1 ≡ F(k)M(k)

|〈 f (k)〉|2 =
n∑

α=1

n∑

β=1

Mαβ(k)[Sαβ(k)− 1]
(A.3)

where the weighting factors for each Sαβ(k) function are given
by

Mαβ(k) = cαcβ fα(k) f ∗
β (k)

|〈 f (k)〉|2 M(k) (A.4)

and M(k) is defined so that M(k = 0) = 1. The Fourier
transform of the even function Mαβ(k) is given by

M̃αβ(r) = 1

2π

∫ ∞

−∞
dk Mαβ(k) exp(−ikr). (A.5)

By the one-dimensional convolution theorem [110] it follows
that, after the inclusion of Mαβ(k), equation (A.2) can be re-
written as

−2π in0 rhαβ(r)

≡ 1

2π

∫ ∞

−∞
dk k[Sαβ(k)− 1]Mαβ(k) exp(−ikr)

= −2π in0 r [gαβ(r)− 1] ⊗ M̃αβ(r) (A.6)

where ⊗ denotes the one-dimensional convolution operator. If
we consider the partial pair distribution function

dαβ(r) = 4π n0 r [gαβ(r)− 1] (A.7)

and we define
d ′
αβ(r) ≡ 4π n0 rhαβ(r) (A.8)

then equation (A.6) can be re-written as

d ′
αβ(r)

= dαβ(r)⊗ M̃αβ(r)

= 4π n0

∫ ∞

−∞
dr ′ r ′gαβ(r ′)M̃αβ(r − r ′)

− 4π n0

∫ ∞

−∞
dr ′ r ′M̃αβ(r − r ′)

= 4π n0

∫ ∞

−∞
dr ′ r ′gαβ(r ′)M̃αβ(r − r ′)

− 4π n0 rMαβ(k = 0) (A.9)

where we have used the expression for the inverse Fourier
transform of equation (A.5)

Mαβ(k) =
∫ ∞

−∞
dr M̃αβ(r) exp(ikr) (A.10)

which gives
∫ ∞
−∞ dr M̃αβ(r) = Mαβ (k = 0). The r

space representation of the x-ray total structure factor of
equation (A.3) is given by the total pair distribution function
G ′(r) which is defined by equation (6). This expression can be
re-written as the Fourier transform

−2π in0 r [G ′
X(r)− 1]

= 1

2π

∫ ∞

−∞
dk k[SX(k)− 1]M(k) exp(−ikr)

= −2π in0 r
n∑

α=1

n∑

β=1

hαβ(r) (A.11)

where the last line follows from equation (A.6). Hence, by
using equation (A.8), the total pair correlation function D′

X(r)
can be defined where

D′
X(r) = 4π n0 r [G ′

X(r)− 1] =
n∑

α=1

n∑

β=1

d ′
αβ(r). (A.12)

At r values smaller than the distance of closest approach
between the centre of two atoms where gαβ(r) = gαβ(r =
0) = 0 it follows that

D′
X(r) = −4π n0 r

n∑

α=1

n∑

β=1

Mαβ(k = 0) = −4π n0 r

(A.13)
since M(k = 0) = 1. Then the limiting value of G ′

X(r) =
G ′

X(r = 0) = 0.
If there is a clearly defined peak in G ′

X(r) that can
be attributed to a specific partial pair distribution function
gαβ(r) then the coordination number n̄βα of chemical species
β around α can be obtained by direct integration over that peak
once a suitably weighted k space function has been Fourier
transformed. For instance, if a peak can be attributed solely
to g11(r) then it is convenient to define a modified x-ray total
structure factor

modS′
X(k)− 1 ≡ F(k)M(k)

c2
1| f1(k)|2

=
n∑

α=1

n∑

β=1

modMαβ(k)[Sαβ(k)− 1] (A.14)

where

modMαβ(k) = cαcβ fα(k) f ∗
β (k)

c2
1| f1(k)|2 M(k) (A.15)

so that the weighting factor for the [S11(k)− 1] term is simply
M(k). The r space representation of the modified x-ray total
structure factor defined by equation (A.15) is given by

mod D′
X(r) = 4π n0 r [modG ′

X(r)− 1] =
n∑

α=1

n∑

β=1

modd ′
αβ(r)

(A.16)
where the modd ′

αβ(r) functions are defined by equation (A.9)
after M̃αβ(r) and Mαβ(k = 0) are replaced by modM̃αβ(r) and
modMαβ(k = 0), respectively. For r values smaller than the
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distance of closest approach between the centre of two atoms

mod D′
X(r) = −4π n0 r

n∑

α=1

n∑

β=1

modMαβ(k = 0)

= −4π n0 r

{
1 +

n∑

α=1

n∑

β=1︸ ︷︷ ︸
β =1ifα=1

modMαβ(k = 0)

}
(A.17)

since M(k = 0) = 1. Then the small r limiting
value of modG ′

X(r) is given by modG ′
X(r = 0) = 1 +

mod D′
X(r)/4πn0 r where modD′

X(r) is given by equation (A.17)
such that modG ′

X(r = 0) takes a finite value. Thus, if ri and
r j define the starting and finishing r values of a well defined
peak in modG ′

X(r) that can be attributed solely to g11(r) then the
corresponding coordination number defined by equation (5) is
given by

n̄1
1 = 4π n0 c1

∫ r j

ri

dr r 2[modG ′
X(r)−mod G ′

X(r = 0)] (A.18)

since g11(r) = [modG ′
X(r) −mod G ′

X(r = 0)] for the range
ri � r � r j .

For example, in the case of glassy GeS2 for which cGe =
1/3, cS = 2/3 and, in electron units, fGe(k = 0) = 32,
fS(k = 0) = 16 the Ge–Ge coordination number, n̄Ge

Ge,
for the peak corresponding to edge-sharing tetrahedra can be
readily found by using equation (A.18) wherein modG ′

X(r =
0) = −3. Alternatively, to obtain the nearest-neighbour
Ge–S coordination number, n̄S

Ge, the modified x-ray total
structure factor of equation (A.14) needs to be re-defined as
modS′

X(k)− 1 ≡ F(k)M(k)/{c1c2[ f ∗
1 (k) f2(k)+ f1(k) f ∗

2 (k)]}
and, by using the same arguments outlined above, it follows
that if the first peak in the new modG ′

X(r) function can
be attributed solely to gGeS(r) where ri and r j define its
boundaries then n̄S

Ge = 4π n0 cS
∫ r j

ri
dr r 2[modG ′

X(r) −mod

G ′
X(r = 0)] where modG ′

X(r = 0) = −1.

Appendix B. The lozenge correction

An oscillating radial collimator system, as used in the x-
ray diffractometer set-up of the present work, allows for
a considerable reduction in the scattered intensity that is
observed from a sample container and gasket in high pressure
experiments [56]. This is illustrated in figure B.1 which shows
the observed scattering volume at different scattering angles 2θ
assuming that the incident beam is perfectly parallel collimated
and the detector system defines a scattered beam with similar
perfect collimation and the same width w. The sample, its
boron nitride (BN) container and the gasket are all assumed
to have cylindrical geometry while the incident and scattered
beams are both in a plane perpendicular to the axis of symmetry
and have an equal height h. In the following we will assume,
for simplicity of notation, that h takes a value of unity.

By inspection of figure B.1(a) it can be seen that at large
scattering angles the observed scattering volume is situated
totally in the sample such that there will be no contribution
to the measured signal from either the container or gasket. As
the scattering angle is decreased, a critical angle ψc is reached

(figure B.1(b)) below which the observed scattering volume
will include a portion of the container (figure B.1(c)). As the
scattering angle is reduced further, a second critical angle φc

is reached below which the observed scattering volume will
also have a contribution from the gasket (figure B.1(d)). Thus,
in order to obtain a normalized differential scattering cross-
section due solely to the sample, the appropriate amount of
scattering from the container and gasket needs to be subtracted
from the observed signal at each 2θ value and the change
in scattering volume of the sample with 2θ also needs to
be taken into account. In principle, it is also necessary to
correct for the self-attenuation of the incident and scattered
beams by the sample, container and gasket materials, the
effect of which will depend on the nature of the materials
and the x-ray energy [111]. However, for the x-ray energies
used in the present experiment, Monte Carlo simulations of
the attenuation corrections show they are small compared to
other experimental errors (such as changes in geometry due
to distortions of the pressure cell) and they were therefore not
included in our analysis procedure. The corrections we have
applied in practice are described below.

Appendix B.1. Calculation of the critical angles ψc and φc

Consider the case when the incident and scattered beams have
the same width w. Then figure B.2 shows the point at which
the observed scattering volume from the sample reaches the
inner container wall as the scattering angle 2θ is decreased. By
geometry it can be seen that this critical angle is given by

ψc = 2 arcsin

(
w

2rs

)
(B.1)

where rs is the radius of the sample cylinder. Using the same
geometry, we also obtain the result that the observed scattering
volume will include a contribution from the gasket below the
critical angle

φc = 2 arcsin

(
w

2 rBN

)
(B.2)

where rBN is the outer radius of the boron nitride container.
Hence for 2θ > ψc scattering is only observed from the
sample, for φc < 2θ < ψc scattering is observed from the
sample and container, and for 2θ < φc scattering is observed
from the sample, container and gasket. There is also an angle,
χc, for which the observed scattering volume reaches the outer
gasket wall. In our experiments this takes a very small value
and its effect would correspond to a reduction in our already
small gasket scattering at low angles. We have therefore not
applied this correction.

Appendix B.2. Calculation of the sample, container and
gasket scattering volumes

Appendix B.2.1. 2θ > ψc. At these angles the observed
scattering comes only from the lozenge shaped area in the
centre of the sample (see figure B.2). In this case the
scattering volume of the sample is found by using the area of a
parallelepiped and may be expressed as

Vs = w2

sin(2θ)
. (B.3)
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Figure B.1. Representation of the observed scattering volumes at different scattering angles 2θ . (a) At large scattering angles the scattering
volume is located solely in the sample region (light grey shaded region). (b) When the scattering angle is decreased below the critical value ψc

the scattering volume will start to include parts of the boron nitride (BN) container. (c) For φc < 2θ < ψc the scattering volume includes parts
of the sample (light grey shaded region) and the BN container (dark grey shaded region). (d) For 2θ < φc the scattering volume includes parts
of the sample (light grey shaded region), BN container (dark grey shaded region) and gasket (solid black shaded region).

Figure B.2. The geometry for evaluating the critical scattering angle
ψc of equation (B.1). For scattering angles 2θ < ψc scattering from
the BN container is seen by the detector.

Appendix B.2.2. φc < 2θ < ψc. Between these angles
there are contributions to the observed scattering from both the
sample and two small sections of the boron nitride container
(see figure B.3). The observed scattering volume of the sample

may be calculated from the areas of the sections marked a, b
and c in figure B.3(a). The four sections of shape a correspond
to half of the total area of the lozenge defined by the incoming
beam and detector collimation giving a volume

Va = 1

2

w2

sin(2θ)
. (B.4)

The four sections of shape b are of identical volume by
symmetry and may be determined by reference to the angle
α marked in figure B.3(b) where

α = 2θ − ψc

2
(B.5)

and ψc is the critical angle given by equation (B.1). Hence the
total volume of the four triangular sections marked as b may be
written as

Vb = 4 × 1

2

w

2 sin(2θ)
rs sinα = wrs

sin(2θ)
sinα. (B.6)

Finally, the volume of the two identical sections of shape c
is determined from the area of a circular segment with angle
2(θ − α) and is hence equal to

Vc = 2(θ − α)r 2
s . (B.7)
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Figure B.3. Details of the sections used to calculate the observed
scattering volumes for the sample and BN container when
φc < 2θ < ψc. In (a) the sections of type a, b and c that lie within
the sample and the section of type d that lies within the container are
identified. In (b) several of the angles and length w/2 sin(2θ) used in
the derivation of equations (B.4)–(B.9) are identified.

Thus the total volume of the sample that contributes to the
observed scattering is

Vs = Va + Vb + Vc = 1

2

w2

sin(2θ)
+ wrs

sin(2θ)
sinα+2(θ −α)r 2

s .

(B.8)
The volume of the boron nitride container that contributes to
the scattering is indicated by the two triangular-like sections
marked as d in figure B.3(a). This volume can be simply
calculated as the volume of the large lozenge (again given
by equation (B.3)) minus the scattering volume of the sample
calculated above i.e.

VBN = w2

sin(2θ)
− Vs. (B.9)

Appendix B.2.3. 2θ < φc. As the scattering angle decreases
below φc scattered intensity will be observed from the epoxy
gasket of the pressure cell. In this region the observed sample
scattering volume is still given by equation (B.8). However,
the observed scattering volume of the boron nitride container
is no longer given by equation (B.9) due to the two small
triangular-like sections of the lozenge with volume Vg that
cut into the gasket. By using the same arguments outlined in

appendix B.2.2 this volume may be written as

Vg = w2

sin(2θ)
−

{
1

2

w2

sin(2θ)
+ wrs

sin(2θ)
sinβ + 2(θ − β)r 2

s

}

(B.10)
where β is defined as

β = 2θ − φc

2
. (B.11)

The observed scattering volume of the boron nitride container
is

V ′
BN = VBN − Vg (B.12)

where VBN is given by equation (B.9).
We note that if the height h of both the incident and

scattered beams is not equal to unity then all of the above
expressions for the volume will need to be multiplied by the
beam height.

Appendix B.3. Application of the corrections

In principle, in the limit when the self-attenuation corrections
are negligible, the container/gasket subtraction could be made
by measuring the scattering with and without the sample
in the container/gasket assembly and simply subtracting the
container/gasket scattering to leave only the scattering due to
the sample. At this point equation (B.8) would be sufficient to
correct the data for the 2θ dependent change in the observed
sample scattering volume. Although this procedure may
be carried out under ambient conditions, it is impractical
after the system has been pressurized since the density of
the various materials will generally have a different pressure
dependence, some distortion of the pressure cell may take place
(changing its effective dimensions), the Bragg scattering from
the container will change as its material is compressed, and
there will be a radial pressure gradient with most of the gasket
at a lower compression than the sample. We therefore adopted
the following strategy.

At each pressure the cell was moved sideways relative to
the incident beam so that the centre of scattering was located
firstly in the container annulus and then in the gasket annulus.
This enabled us to obtain diffraction patterns dominated by
either the container or the gasket scattering and, for each 2θ
angle, the truncated lozenge shaped scattering volume of the
container or gasket was calculated. The scattering per unit
volume for both the container and gasket materials was thereby
obtained as a function of 2θ . To provide an estimate of the
container and gasket scattering when the cell is positioned
so that the incident beam passes directly through the sample
centre, the results were multiplied by either the container
volume calculated in equation (B.9) (= 0 for 2θ > ψc) or
the gasket volume calculated in equation (B.10) (= 0 for
2θ > φc). At this point, the scattering from the sample
was obtained by subtracting these weighted contributions from
the diffraction pattern measured for the sample centred in the
incident beam and the data were finally normalized according
to equation (B.8). In practice, it was also necessary to refine
the value used for the sample radius in the calculations in order
to compensate for changes in the cell dimensions with change
of pressure.
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Appendix B.4. Generalization to other container
configurations and beam geometries

For diffraction experiments made at high pressures and high
temperatures, a cylindrical graphite heater is placed between
the BN sample container and gasket. This will lead to another
critical angle 2θ = νc just above which the observed scattering
volume will have a contribution from the sample and BN
container and just below which the observed scattering volume
will have a contribution from the sample, BN container and
graphite heater. The formalism of this appendix can be
readily generalized to account for this change of container
configuration.

The formalism of this appendix can also be adapted to
account for changes in the beam geometry and the results
obtained above will provide a benchmark for assessing the
effect of these changes. For example, a scattered parallel
beam need not have the same width as the incident beam and
the observed scattering volume sketched in figure B.1 is then
calculated by considering the area of a parallelogram with
opposite pairs of sides having unequal length. Additionally,
the collimation system will generally define a non-parallel
scattered beam, leading to an observed scattering volume
with a trapezoidal cross-section, and there will also be issues
associated with the beam umbra/penumbra. Also, although
the sample in the x-ray beam is aligned to maximize the
measured intensity, this position may not correspond to the
axis of the sample being placed exactly at the geometrical
centre of the diffractometer owing to attenuation of the
incident and scattered beams and sample distortion effects.
In practice, given the other experimental uncertainties, the
equations derived in this appendix can still be used as an
effective guide for estimating the various contributions to the
observed scattering (the 2θ dependence of the observed sample
scattering volume is particularly important in this context),
especially if the variation in beam geometry is small.
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Nelmes R J, Loveday J S and Hamel G 2005 High Pressure
Res. 25 229
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